
EuroCG 2012, Assisi, Italy, March 19–21, 2012

Order type invariant labeling and comparison of point sets

Greg Aloupis⇤ Muriel Dulieu† John Iacono† Stefan Langerman⇤ Özgür Özkan†

Suneeta Ramaswami‡ Stefanie Wuhrer§

Abstract

We consider the problem of computing an order type in-
variant labeling for a given set of n points. In 2D, such a
labeling can be constructed in O(hn2

) time, where h is the
size of the smallest convex layer. In 3D the time complex-
ity is O(n3

log n) if the point set is in general position1.
This is useful to test if two point sets have the same

order type within the same time bounds. It can also be
used as preprocessing for any order type invariant algo-
rithm, such as triangulation/tetrahedralization, or polygo-
nization.

1 Introduction

When an algorithm computes a structure such as a trian-
gulation or polygonization, and many solutions are pos-
sible, sometimes it is desirable that the same solution is
always returned for two combinatorially equivalent point
sets. With this in mind, we consider the problem of com-
puting an order type invariant labeling for a point set S.

In the plane, the order type of S is determined by as-
signing to every ordered triple of points pi, pj , pk an ori-
entation depending on their relative positions: clockwise,
counter-clockwise, or collinear. In 3D, order type labels
are assigned to ordered subsets of four points, depend-
ing on their arrangement (collinear, coplanar, left/right-
handed tetrahedra). An order type representation (OTR)
of S is any (possibly implicit) encoding of this informa-
tion.

Two unlabeled point sets S
1

and S
2

are combinatorially
equivalent if and only if they have the same order type,
or in other words if they have the same OTR for some la-
beling. If the point sets are labeled, then there must be a
bijection between S

1

and S
2

, such that any triple in S
1

has
the same orientation as its corresponding triple in S

2

. In
other words, the OTR of S

1

will be identical to the OTR
⇤Département d’Informatique, Université Libre de Bruxelles,

aloupis.greg@gmail.com,stefan.langerman@ulb.ac.be

†Department of Computer Science and Engineering, Polytech-
nic Institute of New York University, mdulieu@gmail.com,

jiacono@poly.edu, ozgurozkan@gmail.com

‡Department of Computer Science, Rutgers University,
rsuneeta@camden.rutgers.edu

§Cluster of Excellence MMCI, Saarland University,
swuhrer@mmci.uni-saarland.de

1Our original accepted submission contained claims about higher di-
mensions and non-general position. After realizing that there was a flaw
in our proof, we have since needed to revoke that portion of our work, as
we work on a suitable correction.

for some permutation (or relabeling) of S
2

. Note that the
bijection is not necessarily unique.

Our goal is to provide an order type invariant (re)-
labeling of a given point set S (this labeling of S,
p0
1

, p0
2

, . . . , p0n is just a permutation of the given points).
This means that for any combinatorially equivalent
set S0 labeled by the algorithm as q0

1

, q0
2

, . . . , q0n, we
will have the property that OTR(p0

1

, p0
2

, . . . , p0n) =

OTR(q0
1

, q0
2

, . . . , q0n). The implication is that any algo-
rithm relying only on combinatorial structure will produce
the same output regardless of the initial labeling of S, if
our relabeling is used as preprocessing.

We show that in 2D an order type invariant labeling can
be computed in O(hn2

) time, where h is the size of the
smallest convex layer of the given point set. The factor
h actually represents the size of the smallest subset of la-
belings (out of all n! labelings of S) that can be formed
“quickly” so that any labeling in the subset has a distin-
guishable OTR compared to any labeling left out. It seems
that producing such a subset is not harder than producing
a subset of “representative points” of S. So, equivalently
one could think of our first phase as finding h “special”
points among S. We first focus on how to report h label-
ings, in Section 3. These are further processed to report a
unique labeling, by comparing all OTRs, in Section 3. The
factor of O(n2

) in the above term represents the smallest
known encoding of an OTR in 2D.

In 3D, for general position, we can quickly reduce S to
a subset consisting of a constant number of points (equiv-
alently, we obtain a constant number of labelings). Our
order type invariant labeling is done in O(n3

log n) time;
see Section 4.

Our labeling permits the comparison of two point sets,
to see if they have the same order type. See Section 5.

2 Related work

Goodman and Pollack [8] showed that the number of
order types on n points is at least n4n+O(n/ logn) and
at most n6n. They improved the upper bound later to�
n
2

�
4n(1+O(1/ log(n/2))) [9]. Aichholzer et al. [1] enumer-

ated all order types for up to 10 points, and thus estab-
lished that any two such point sets in general position with
the same number of hull points have isomorphic triangula-
tions. Aichholzer and Krasser [2] extended this to sets of
11 points. Goodman et al. [11] showed that the coordinate
representation of order type requires exponential storage.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

Greg Aloupis

28th European Workshop on Computational Geometry, 2012

The most related work is that of Goodman and Pol-
lack [10], in which an efficient OTR was defined for any
dimension d. Their OTR in 2D stores the number of points
to the left of the vector through every ordered pair of
points. In 3D, for each ordered triple of points, it stores
the number of points in the halfspace bounded by the half-
plane through the triple, with normal vector equal to the
cross product of the triple. This extends easily to any di-
mension d, where the OTR has size O(nd

). Note that there
is no assumption on general position. Interestingly, they
showed that this is sufficient to determine exactly which
points are in any particular halfspace. The time to com-
pute their OTR was given as O(nd

log n). Note that it has
been established elsewhere that in 2D the time complexity
is quadratic [7, 5].

Goodman and Pollack also defined canonical orderings,
which are essentially a subset of all n! orderings (label-
ings) that can be checked to determine if two sets are com-
binatorially equivalent. For 2D they gave h canonical or-
derings, one for each convex hull point p. For each p,
the remaining points can be labeled by a clockwise sort
around p, starting from any direction that does not inter-
sect the convex hull. It is easy to see that if two point
sets S

1

,S
2

have the same order type, then the OTR of S
1

will match the OTR for at least one of the canonical order-
ings of S

2

. This was a great improvement over the n! OTR
comparisons that would have to be made using brute force.
Since two OTRs can be compared in quadratic time, two
point sets can be compared in O(hn2

) time. Note that one
does not need the improvement of [7, 5] to avoid spending
⇥(n2

log n) time computing each of the h OTRs. Since
each of these OTRs represents the same point set, once
one is computed the others can be obtained by a permu-
tation, i.e. in quadratic time each. This is why quadratic
time is spent for each of the h comparisons.

In 3D the canonical orderings were based on the di-
rected edges of the convex hull (at most 6n � 12 in total,
which can be reported in O(n log n) time). For each such
edge, a labeling of S could be obtained via a clockwise
plane-sweep starting from a tangent plane containing the
edge. The OTR corresponding to one of these labelings
can be computed in O(n3

log n) time, and each of the re-
maining takes cubic time, by a permutation on the first.
So, two point sets can be compared, by in turn comparing
an OTR of one to 6n�12 OTRs of the other. Each such
OTR comparison takes cubic time. Therefore two sets can
be compared in O(n4

) time.
Such sweeps can be extended to any fixed dimension

d, according to [10]. There are O(nbd/2c
) canonical or-

derings. Each corresponds to a “face flag”, which can be
thought of as a directed simplex. Each ordering can be
computed in O(n log n) time once its face flag is known.
Finding all face flags takes O(nd

) time for general posi-
tion; otherwise in O(n(d(d+3)/2)

) time.
For each ordering, an OTR is produced: the first in

O(nd
log n) time, and the rest in O(nd

) time. There-
fore, for general position, it takes O(nb3d/2c

) time to com-

pare two point sets (comparing O(nbd/2c
) orderings, all of

which are constructed in O(nb3d/2c
) time, and where each

comparison takes O(nd
) time). For non-general position

the comparison is dominated by the time to compute all
face flags: O(n(d(d+3)/2)

).

3 Order type invariant labeling in 2D

We use “canonical” labelings, similarly to Goodman and
Pollack [10]. Instead of using the convex hull and letting
h represent its size, we set h to be the number of points on
the convex layer c⇤ with smallest size. It takes O(n log n)
time to compute all convex layers [3].

Assume for now that c⇤ contains more than one point.
We select the starting vector for any point p on c⇤ to be the
one through its clockwise neighbor on c⇤. This is an order
type invariant choice. Still, we can end up with h = O(n)
canonical labelings. For point sets with more than a con-
stant number of convex layers, h = o(n). For random
point sets, h is sub-linear as well; see [6]. Note that the
worst case is not the point set in convex position, for this
is trivial to label (there are n possible distinct sequential
labelings of a cycle, but they are all symmetric and combi-
natorially equivalent). It is worse to have a constant num-
ber of layers, each with a linear number of points.

Finally, if p is the only point on the smallest layer, then
it is defined as the first point of our order type invariant
labeling of S. We remove it from S and repeat. We will
repeat at most once because even if we end up with a sin-
gle point for a second time, the two points permit us to
uniquely sort the rest.

The convex layer idea is simply a heuristic way of nar-
rowing down the candidate labelings, from all permuta-
tions. The general idea is to apply any combinatorial test
that easily ranks points, and keep only those points that
have highest rank. If several points achieve the highest
rank, we can apply another combinatorial test, and so on.
So far, we have followed this idea by saying that the points
of highest rank are those on a particular convex hull layer.
Of course, we cannot apply an endless series of tests, for
this will eventually become computationally expensive.
The challenge is to select the most efficient tests possible.
We have tried several combinations of heuristics (see full
paper). Curiously, none so far have resulted in a worst-
case sub-linear set of labelings, within O(n3

) time.
By now we have chosen O(h) = O(n) order type in-

variant labelings. We compute the OTR for each labeling
p0
1

, . . . , p0n, in quadratic time. Recall that this is a concate-
nation of n(n� 1) variables, each of which represents the
number of points to the left of the vector from one point
to another. The order of the variables is given by a lexi-
cographic description of the vector index. This implicitly
encodes any combinatorial differences missed by the sim-
ple geometric tests of the preceding section.

The rest is simple: we choose the largest lexicographic
OTR as our solution. Since each OTR is a list of quadratic
size, this takes O(hn2

) time. If several lists tie for the

EuroCG 2012, Assisi, Italy, March 19–21, 2012

highest rank, we choose arbitrarily among them. Clearly
any of these lists will provide the same combinatorial out-
put if given to a combinatorial algorithm (for instance,
for triangulation). Furthermore, if we are given two point
sets, comparing their respective lexicographically selected
OTRs will determine if they have the same order type. In
2D this is just a variant of the method of Goodman and
Pollack, described in Section 2. Instead of comparing h
OTR’s from one set to one arbitrary OTR of the other, we
compare h OTRs among themselves for each set, and then
compare the winners.

4 Labeling in R3

Recall that in 3D the order type of S depends on the spatial
relation among every quadruple of points.

In 2D we used only those points on the smallest convex
layer, to determine a subset of labelings. The nice thing
about 2D is that it is easy to obtain one labeling per point.
In 3D it still makes sense (although only heuristically) to
use only those points on the smallest convex layer, so we
begin by discarding all other points. The objective is to
obtain a labeled (ordered) triple of points, in an order type
invariant way. From these, it is possible to label all re-
maining points with a sweep.

From the smallest convex layer, we will iteratively keep
removing points, and in fact we will be satisfied if we
can reduce S to any constant number of candidate points.
However we want at least three non-collinear points, or
possibly two if they happen to be convex hull neighbors.
As in 2D, if we remove too many points, we can store
the few remaining and re-iterate on the removed set. Even
if we end up with a collinear triple after three iterations
of discarding, it is easy to ensure that the next iteration
will give a non-collinear point; simply exclude all points
collinear to the triple from that iteration. So this part of the
algorithm does not rely on general position.

Once we have our desired constant number of points,
for every ordered non-collinear triple among them, we
can carry out a uniquely directed plane sweep to relabel
S. By [10], the OTR for each such labeling can be
computed in O(n3

log n) time. Again, the overall solution
will be the lexicographically largest OTR. For a constant
number of candidate points, the number of triples, and
thus the number of OTRs to compare, is constant. Each
representation has size O(n3

), so it takes cubic time to
choose lexicographically. Therefore the overall run-time
is also O(n3

log n). What remains is to show how to
remove all but a constant number of points, in an order
type invariant way.

Let S be the points of the smallest convex layer. Let
CH(S) denote the convex hull of S. The following sim-
ple procedure does just what we need; it identifies a con-
stant number of points from S. Let P = S. Repeat the
following steps until no points are removed from P in step
2.

1. Compute CH(P). Remove all interior points from
P , including non-extreme collinear points.

2. Remove from P all points except those that have the
lowest edge degree on CH(P).

If more than three points survive, CH(P) must be a poly-
hedron with all edge degrees being equal.If S is in general
position then every face of CH(P) must be a triangle.
Thus CH(P) must be combinatorially equivalent to a
tetrahedron, octahedron, or icosahedron. Each has only
a constant number of vertices. Note that without general
position, it is possible to follow the edge-degree pruning
step with another test for each vertex. That is, we can
count the size of surrounding faces, and keep only those
vertices that qualify lexicographically. This would result
in a polyhedron where every vertex appears identical,
with respect to edge degrees and face sizes. Thus the
polyhedron would be isomorphic to one of the Platonic or
Archimedean solids, or some of the prismatoids. In the
latter case the resulting size can be linear, which is why
general position is assumed. Our ongoing work involves
resolving this case.

Step 1 takes O(n log n) time. Step 2 takes linear time
since the sum of edge degrees is linear. There are fewer
than n iterations since at least one point is removed each
time. Thus this procedure takes O(n2

log n) time, which
does not affect the time complexity dominated by OTR
computations.

5 Comparing the order type of two sets

As mentioned, the method of Goodman and Pollack [10]
compares order types of three-dimensional point sets in
general position in O(n4

) time. The evaluation is done by
comparing the OTR for each canonical labeling of S

1

to
one arbitrary OTR from S

2

.
We have ongoing research to improve OTR represen-

tation and computation. For now, in Section 4 we have
shown that the number of canonical labelings can be re-
duced to a constant. It costs O(n3

log n) time to compute
the OTR for each, and with a lexicographic sort we can
select one representative OTR for any point set. Then S

1

and S
2

are compared by matching their OTRs.

6 Final notes

Given an order-type invariant labeling of S, we can solve
the following problems in an order-type invariant way.
Consider any problem involving building a graph by
adding edges to S, based on combinatorial comparisons,
i.e. based on order type. Examples of such problems
include triangulation/tetrahedralization, polygonization,
finding a non-crossing matching, finding a non-crossing
spanning tree, or computing a halving line or a ham-
sandwich cut. An order type invariant labeling can be

Greg Aloupis

28th European Workshop on Computational Geometry, 2012

constructed as preprocessing, so that any combinatorially
equivalent input will produce the same output.

We ask whether an OTR can be computed in o(n3

log n)
time in 3D, and whether any worst-case sub-cubic al-
gorithm exists for the planar case. For the latter, we
specifically ask whether a sub-linear number of canonical
labelings can be computed in sub-cubic time. Of course,
the other possibility also exists (if the number of labelings
remains linear): that of reporting an OTR in sub-quadratic
time. This is unlikely, as it implies the existence of an
OTR that can be stored in sub-quadratic space. Whether
this can be done was an open problem posed in [9].

We thank the other participants of the 2011 Mid-Winter
Workshop on Computational Geometry for providing a
stimulating research environment.

References

[1] O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumer-
ating order types for small point sets with applications. Or-
der, 19(3):265–281, 2002.

[2] O. Aichholzer and H. Krasser. Abstract order type exten-
sion and new results on the rectilinear crossing number.
In Symposium on Computational Geometry, pages 91–98,
2005.

[3] B. Chazelle. On the convex layers of a planar point set.
IEEE Transactions on Information Theory, 31(4):509–517,
1985.

[4] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete and Computational Geometry,
10:377–409, 1993.

[5] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of
geometric duality. In IEEE Symposium on Foundations of
Computer Science, pages 217–225. IEEE, 1983.

[6] K. Dalal. Counting the onion. Master’s thesis, McGill Uni-
versity, 2004.

[7] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing
arrangements of lines and hyperplanes with applications.
SIAM Journal of Computing, 15(2):341–363, 1986.

[8] J. Goodman and R. Pollack. Upper bounds for configu-
rations and polytopes in Rd. Discrete & Computational
Geometry, 1:219–227, 1986.

[9] J. Goodman and R. Pollack. The complexity of point con-
figurations. Discrete Applied Mathematics, 31:167–180,
1991.

[10] J. E. Goodman and R. Pollack. Multidimensional sorting.
SIAM Journal on Computing, 12(3):484–507, 1983.

[11] J. E. Goodman, R. Pollack, and B. Sturmfels. Coordinate
representation of order types requires exponential storage.
In ACM Symposium on Theory of Computing, 1989.

